Third Law of Thermodynamics ( The Law of zero entropy )


"Nernst" in 1906 proposed a general priniciple supported by series of experimental tests on problem of atomic heat at low temperatures. it was proposed as " The new heat theorem " and is called as third law of thermodyanmics.

Nernst statement

                       " The heat capacities of all solids tend to zero as the absolute zero of temperature is approached and   that the internal energies and entropies of all substances become equal there, approaching their common value asymptotically".

This law neither follows from first law or second law nor is totally a new law.

Other statement of Nernst:

                        " No entropy change takes place when pure crystalline solid reacts at absolute zero".

 Plank statement:

                        " The entropy of a solid or a liquid is zero at absolute zero of temperature".

Lewis and Randall statement 

                       "Every system has finite positive entropy, but at the absolute zero of temperature the entropy may become zero and does so become in the case of a pure crystalline substance".      

But this statement is confined to pure crystalline solids because theoretical argument and experimental evidence have shown that the entropy of solutions and super cooled liquids is not zero even at absolute zero.

For instance, ice always has residual entropy at absolute zero. It also doesn't apply to amorphous class of substances like glass etc.

Importance of third law of thermodynamics

  • Third law is useful in explaining the nature of bodies in neighborhood of absolute zero.
  • It permits the calculations of absolute values of entropy and physical interpretation of thermodynamic properties such as Helmholtz & Gibbs free energies etc.
  • It can be conceived that as the temperature of system tends to absolute zero, its entropy tends to a constant value which is of pressure and state of aggregation etc. 
 "Nernst" formulated that "the entropy change in isothermal reversible process of condensed system approaches zero as temperature at which the process occurs approaches zero".

The principle of Barthelot states that "every chemical transformation which takes place with out the intervention of external energy tends towards the production of that substance or systems of substance which will give the greatest development of heat i.e that process is realized which is most exothermic.
       

What is the difference between absolute, Gauge and vacuum pressures?

To answer this question let us know the various types of pressures

1) Atmospheric pressure

2) Absolute pressure

3) Gauge pressure

4) Vacuum pressure

Atmospheric pressure:

The atmospheric pressure exerts a normal pressure upon all surfaces with which it is in contact, and is known as atmospheric pressure.

It varies with altitude and it can be measured by means of a barometer.As such it is also called "Barometric pressure".

Absolute pressure: -

When pressure is measured above absolute zero it is called absolute pressure. All values of absolute pressure are positive. The lowest absolute pressure which can probably exist corresponds to absolute zero or complete vacuum.

Gauge pressure: -

When pressure is measured either above or below atmospheric pressure as a arbitrary datum then it is called as gauge pressure. All pressure gauges read zero when open to atmosphere.
Pressure gauges read only the difference between, pressure of a fluid to which they are connected & atmospheric pressure.

Vacuum pressure:-

If pressure of a fluid is below atmospheric pressure it is designated as vacuum pressure. Its gauge value is the amount by which it is below the atmospheric pressure. A gauge which measures vacuum pressure is vacuum gauge.


All about Second Law of Thermodynamics?


Why second law of thermodynamics introduced? 

We know that some processes occur spontaneously but if we try to reverse the direction of process, the process do not occur spontaneously and further some external energy is required to move the given system away from state of equilibrium. 

The question is that "why such reversed processes do not occur spontaneously?" could not be answered by first law because the total energy of system would remain constant in the reversed process as it did in the orginal path and ther is no voilation of first law. Therfore there must be some other natural principle in addition to first law which determines the direction in which a process can take place in an isolated system. This principle is "second law of thermodynamics" .



Second law infers us that "the entropy of universe tends to maximum". 


Second law of thermodynamics in terms of entropy:

  "The entropy of an isolated system is fully conserved in every reversible process i.e. for every reversible process the sum of all changes in entropy taking place in an isolated system is zero. If the process is not a reversible one, then the sum of all changes in entropy taking place in an isolated system is greater than zero. In general we can say that in every process taking place in an isolated system the entropy of system either increases or remains constant."  

Condition for equilibrium of an isolated system

“If an isolated system is in such a state that its entropy is maximum, any change from that state would evidently lead to decrease in entropy and hence will not happen. Thus the necessary condition for equilibrium of an isolated system is that its "Entropy shall be maximum."


 Other forms of second law of thermodynamics

Kelvin-Planck statement : It is impossible to construct a device which, operating in a cycle has the sole effect of extracting heat from a single reservoir and performing equivalent amount of work.

Clausius statement : It is impossible for heat to flow from a cooler body to another hotter body  without the aid of external energy.

 "Study on heat engines is based on the above law"

What is first law of Thermodynamics?


When a definite amount of work is done a certain amount of heat is produced and vice versa.
It can be mathematically expressed as
W = JH

where 'J' is a constant called Mechanical equivalent of heat and 'H' is heat produced. 

But a true version of the law is stated as follows

 “When an amount of heat is supplied to a system a part of it is used in raising internal energy of the system and a part in doing the work.”
                                                      dQ = dU + dW 
 where
dQ - amount of heat supplied ;
  dU - change in internal energy ;
                                                            dW - change in work

 From the first law it could be inferred that it is impossible to derive any work without expenditure of an equivalent amount of energy in some other forms.

 According to first law "The energy of universe remains constant".

 For mathematical calculations it should be kept in mind that heat absorbed by the system should be taken as "positive" and rejected by the system should be taken as "negative".

 Let us now apply first law to some thermodynamic processes.

 i) In an isothermal change dU=0 and dQ = dW; thus in an isothermal change the quantiity of heat absorbed by  a perfect gas is transformed into work by the gas.

 ii) In an adiabatic process, dQ=0 and dU+dW=0 -> dU = - dW

  a) If the system is compressed, work is done on the gas and thus dW is taken as -ve.
                                           Hence  dU = -(-dW) = dW

   b) If the system expands adiabatically 'dW' is positive.
                                           Hence  dU=-(+dW) = -dW

iii) In an adiabatic compression, the decrease in volume is associated with increase in temperature and 
      increase in pressure.

Why does nuclear fusion reaction yield more energy than Nuclear fission reaction?

Fission only produces more energy than it consumes in larger nuclei (eg: Uranium & Plutonium) which have around 240 nucleons.




Fusion only produces more energy than it consumes in small nuclei (in stars, Hydrogen & its isotopes fusing into Helium).


The energy released when four Hydrogen nuclei fuse in to a Helium nucleus is around 27MeV or about 7 MeV per nucleon.

For fission of U or P, energies released are around 200 MeV or so. The energy per event is greater in fission, but the energy per nucleon (fusion = about 7MeV/nucleon; fission = about 1 MeV/nucleon) is much greater in fusion.

Now lets look at fission. An example of fission is when a U-235 atom is split by a neutron into a Ba-144 and Krypton-89 atoms and 3 neutrons. The binding energy per nucleon for Uranium is about 7.6 MeV and for Barium around 8.3 MeV giving an increase in binding energy during fission of about 0.7MeV per nucleon or a total of 164.5MeV in total.

In a fusion reaction firstly two Hydrogens form a Deuteron, a positron and an electron neutrino. Then the Deuterium fuses with  another Hydrogen to form  He-3 and a photon. Finally two He-3's fuse forming a Helium nucleus and two hydrogen nuclei.

Considering the mass of four  protons/hydrogen nuclei and the mass of helium produced we get a mass difference of 24.69 MeV.

Conclusion: We can conclude that fusion reactions give out more energy per reaction. This is 0.7 MeV for fission and 6.2 MeV for fusion.  

I think you have cleared your doubt. Have a nice time ............bye.