Whar are Miller Indices?

The concept of Miller Indices is to describe the various directions and positions of atoms in crystals. Any point within the given Lattice can be considered as origin. The crystallographic axis a,b&c can be considered as the 3 coordinate axes. So these 3 axes can be selected along 3 crystallographic axes.

Consider the plane to be indexed. Note down the intercept made by the plane on the three crystallographic axes, intercepted by translation vectors.



Let the intercepts be 3a, 2b, 4c, i.e. 3, 2, 4. Find out the Reciprocal of intercepts 1/3, 1/2 & 1/4.

Convert them in to a set of integers: 4, 6 & 3.

This set of integers are represented in Parenthesis -- (4,6,3)

The set of three integers is known as Miller Indices of Plane.

In general, the Miller Indices are represented by (h,k,l)

The set of 3 numbers (h,k,l) so obtained are known as Miller Indices and conventionally enclosed in parenthesis.

These set of numbers defines the planes and also the family of Planes Parallel to it and equally spaced.



It is clear that Planes 1,2 & 3 have intercepts only on the crystallographic axis a. They all are separated by equal distances.

The intercept of Plane1 on axis a is at distance ‛a’. Therefore the intercept is (a, ∞,∞).

Take the intercepts as (1, ∞,∞).

Reciprocate them : 1/1, 1/∞, 1/∞ ---- (1,0,0)

Therefore the Miller indices of Plane 1 are (1,0,0).

In case of Plane 2 intercepts are (2, ∞,∞)

Now (h,k,l) = 1/2, 1/∞, 1/∞ = (1,0,0)

In case of Plane 3 intercepts are (3, ∞, ∞)

Hence, (h,k,l) = (1,0,0)

By taking the Reciprocal of all Planes inside a single unit cell, we can discuss all crystal Planes in terms of Planes passing thru a single Unit cell.

The fractions are converted in to smallest set of integers for convenience. If (h,k,l) are miller indices the Plane intercepts the Unit cell at a/h, b/k, c/l




In the above figure, the intercepts are given by (3, 2, 1)

Reciprocal of intercepts = 1/3, 1/2, 1/1 = (2,3,1)

Therefore, (h,k,l) = (2,3,1)

If an intercept is at infinity, the plane is parallel to one of coordinate axes, the corresponding index is zero.

If a Plane cuts an axis on negative side of origin the corresponding index is negative and is indicated by placing a minus sign above the index.

Directions:

The indices of a direction, are simply the vector components of the directions resolved along each of the coordinate axis and reduced to small integers.

In a cubic Unit Cell, if the origin is at the corner and the axes are parallel to the edges, body diagonal would be represented as [111].

A Lattice point n1a+n2b+n3c lies in the direction [n1 n2 n3].

n1, n2 & n3are integers.

The use of square brackets around the numbers [111] denotes that they refer to a crystallographic direction.


In the same way ‛+a’ axis have indices [1,0,0] and similarly ‛-a’ axis have indices [1,0,0] and for ‛+b’ axis [0,1,0] and ‛-b’ axis [0,1,0].

In general the direction of a line perpendicular to a plane having miller indices (h,k,l) is given by [h k l]


POSITIONS

Positions or points are specified as in any other coordinate system namely by 3 numbers each of which refers to distance along the axis expressed as multiples of Lattice constant.

The coordinates of the center point of cubic unit cell are [1/2,1/2,1/2]

The coordinates of the face centers are [1, 1/2, 1/2]


Difference between Temperature and Heat

Heat is a form of (Thermal) energy due to the kinetic energy of molecules in a substance. Temperature is measure of hotness or coldness of a body. Temperature is a measurement of the average kinetic energy of the molecules in an object or system.

Mathematically, dQ = k dT; where dQ is the change in heat content, k is a constant of proportionality, and dT is the change in temperature (usually in degrees Kelvin).

WHAT IS ABSOLUTE ZERO?



Absolute Zero could be defined in different ways as follows:

Absolute Zero is a state of minimum molecular movement

Absolute zero is that temperature at which disorder of a system reaches its minimum value.

Absolute Zero is a state of zero Entropy.

Absolute Zero is the temperature at which a “Heat Engine” can operate at 100 percent efficiency.

Absolute zero is the point where no more heat can be removed from a system, according to the absolute or thermodynamic temperature scale. This corresponds to 0 K or -273.15°C. In classical kinetic theory, there should be no movement of individual molecules at absolute zero.

A system at absolute zero will not have enough energy for transfer to other systems. It is therefore correct to say that molecular kinetic energy is minimal at absolute zero i.e; the motion of molecules in a system is least at absolute zero

Absolute zero is defined as 0 (zero) K on the Kelvin scale and as −273.15°C on the Celsius scale. This equates to −459.67°F on the Fahrenheit scale.

The third law of thermodynamics says absolute zero is not obtainable in a finite number of steps (and it is impossible to practically have an infinite number of steps.

You couldn't send a current through a wire at absolute zero because the electrons would not move.
The critical point when there is more resistance is absolute zero itself.

The ideal gas law says that PV=nRT. This means that in order for the temperature to be 0 (absolute 0), P or V would have to be zero. An actual gas cannot have a Pressure or Volume of zero and still have mass. This is a reason while absolute zero is unobtainable.

What is triple point of water?

The triple point of any substance is that temperature and pressure at which the material can coexist in all three phases (solid, liquid and gas) in equilibrium.Triple point of water is a single point in P-T phase diagram of water where the three phases of water coexist.




The triple point of water is defined to take place at 273.16 K, where K is the SI unit Kelvin. Unlike Celsius and Fahrenheit scales, Kelvin is not measured using degrees; we merely say "Kelvin."
It is important to note that the pressure the triple point exists at is 4.58 torr in SI units or .006 atm.

Electromagnetism - Detailed Explanation



Why do we call the subject electromagnetism?
 For stationary charges Coulomb’s law holds. But it is not true, when charges are moving the electrical forces depends also on motion of charges in a complicated way. One part of the force between moving charges we call the magnetic force. It is really one aspect of electric effect. This is why we call the subject Electromagnetism.

What is Field?
          A “FIELD” is any physical quantity which takes on different values at different points in spaces.
 
Example: -     Temperature --------  a scalar field T(x,y,z).
                         Velocity of a flowing fluid is vector field.

       The relationship between the values of field at one point and the values at a nearby point are very simple With only a few relationship in form of differential equations we can describe fields completely. It is in terms of such equations that laws of electrodynamics are most simply written.



Characteristics of vector field
There are two mathematically important properties of a vector field which we use in description of laws of electricity from field point of view.
·       The flux of vector field.
·       The circulation of vector field.
For an arbitrary closed surface, the next outward flow or flux is the average outward normal component of vector field times the area of surface.
Flux = (average normal component)*(surface area)

The second property of vector field has to do with a line rather than a surface. If there is a net rational motion around some loop then vector field is said to be circulating.

For any vector field the circulation around any imaginary closed curve is defined as average tangential component of vector multiplied by circumference of loop.
    Circulation = (average tangential component)*(distance around)
The properties flux and circulation can describe as laws of electricity and magnetism at once.


The laws of electromagnetism
The first law of electromagnetism describes the “flux” of electric field.



 
 If we have an arbitrary stationary curve in space and measure circulation of electric field around curve, we will find that it is not, in general, zero (although it is for coulomb field).         


For electricity there is a second law that states for any surface ‘S’ (not closed) whose edge is curve C,



We can complete laws of electromagnetic field by writing two corresponding equations for magnetic field B.
 

           Flux of B through any closed surface = 0 -----------(3)

For and surface bounded by curve ‘C’    

 


Constant  'c' appears in above equation because (“magnetism is in reality a relativistic effect of electricity”).
The force on charge in general in electromagnetism is given as follows –

 The second part of above equation can be demonstrated by passing a current through a wire which hangs above bar magnet

The wire will move when a current is turned on because of force
“F = qv*b”. When a current exists, the charges inside wire are moving, so they have a velocity ‘V’ and magnetic field from magnet exerts a force on them, which results in pushing wire sideways.
When the wire is pushed to left, we would expect that magnet must fell push to right to conserve momentum. Although the force is too small to make movement of bar magnet visible, a more sensitively supported magnet, like a compass needle, we will show movement.

How does the wire push on magnet?
The current in wire produces a magnetic field of its own that exerts a force on magnet. According to last term in equation (4), a current results in circulation of ‘B’ in this case lines of B are loops around wire as shown in figure. This ‘B’ is responsible for force on magnet.
Equation (4) tells us that for a fixed current through wire the circulation of ‘B’ is same for any curve that surrounds the wire.

For curves say circles that are farther away from wire, the circumference is larger, so tangential component of ‘B’ must decrease.



We have said that a current through a wire produces a magnet field, and that when there is a magnetic field present there is a force on a wire carrying a current.

Then we should also expect that if we make a magnetic field with a current in one wire, it should exert a force on another wire which also carries a current. When current are in same direction they attract each other.Electrical currents as well as magnets make magnetic fields.

But what is a magnet anyway
If magnetic fields are produced by moving charges, is it is not possible that magnetic fields from a piece of iron is really the result of current.
We can replace bar magnet of our experiment with a coil of wire carrying current. So a piece of iron acts as though it contains a perpetual circulating current. We can in fact understand magnets in terms of permanent currents in atoms of iron.

Where do these currents come from?
One possibility would be from motion of electrons in atomic orbits. Actually that is not case for iron, although it is for some materials. It is due to spin of electron and it is this current that gives magnetic field in iron.




 All the electromagnetism is contained in Maxwell equations.


Maxwell Equations
 




 

Now consider the ‘static’ case. All charges are permanently fixed in space or if they do not move, they move as a steady flow in a circuit.
In these circumstances, all of the terms in the Maxwell equations which are time derivatives of field are zero. So Maxwell equations becomes



Electrostatics





Magnetostatics


This means that

The interdependence of E & B does not appear until there are changes in charges or currents, as when a condenser is charged or a magnet moved.
Only when there are sufficiently rapid changes, so that the time derivatives in Maxwell equations become significant, will E & B depend on each other.
Electrostatics is a clean example of vector field with zero curl and a given divergence.
Magnetostatics is a neat example of a field with zero divergence and a given curl.

How to find electric field at a point ‘P’ due to a charge distribution?

The electric field ‘E’ at point , from a charge distribution, is obtained from an integral over the distribution (shown in following figure).



 

 



The work done against the electric forces in carrying a charge along some path in the negative of component of electric force in direction of motion, integrated along the path. If we carry a charge from point ‘a’ to point ‘b’ then 


 



 F  = Electric force on charge at each point.
Ds = Differential vector displacement along path